WOW

Engineering and Economics Group

Outline

- a) Turbines On-shore v Off-shore
- b) Foundation Options and Installations
- c) Meteorological Considerations
- d) Transmission/Interconnection
- e) Economics, Finance and Risk N/A
- f) Appendix

Off-shore Turbines

Differences between on-shore and off-shore turbines

- Turbines are generally a larger version of on-shore turbines. Currently Developing of a 7.5MW turbine.
- Humidity and corrosion protection
- Boat or helicopter access platforms
- Redundant subsystems and sensors
- Transformer in tower

Existing Off-shore turbine Suppliers

Manufacturer	Turbine	Capacity (MW)	Rotor Diam(M)
General Electric	3.6s	3.6	111
Siemens	SWT-3.6-107	3.6	107
Dewind	D8.2	2	80
Vestas	V90-3.0	3	90
Nordex	N90	2.5	90
REPower	5M	5	126
ScanWind	SW-110-3500 DL	3.5	110
Bard		5	122
WinWind	WWD-3	3	100
Multibrid	M5000	5	116
Enercon	Development	4.5	112

Great Lakes Wind Turbine Adaptations

- Coatings to prevent ice accumulation
- No need for salt water protection such as coatings and humidity protection
- No need for Helicopter access platforms
- No need for tall transition sections for high wave and tide action.
- Submarine cables require less corrosion protection.

Future Developments in Offshore Technology

- Higher tip speed rotors (weight reduction)
- Two blade rotors (weight reduction)
- Improved diagnostics and sensors to reduce access intervals.
- Direct drive generators (Reliability)

Off-shore Capital Costs

- No American experience
- No Great Lakes Experience
- Estimate costs relative to on-shore costs
- European experience shows capital costs are 50%-100% higher than on-shore

Wind Turbine Cost Drivers

- On-shore and off-shore
 - Wind Turbine Prices are increasing
 - Commodity prices
 - Monetary Exchange Rates
 - Wind Turbine Demand
- Off-shore
 - Increased commercialization of some technologies decreasing cost differential between on-shore and offshore
 - Some newer technologies' costs are unknown

Off-shore Wind O&M Methods &

Costs

- Methods
 - Specialized boat access
 - Ampelmann platform
 - Access in ice conditions

Costs

- No American Experience
- No Great Lakes Experience
- O&M costs are higher on a \$/kW or per turbine basis compared to on-shore turbines
- Studies show O&M Costs to be similar to On-shore on \$/kwh basis due to higher capacity factors.
- Estimating O&M costs relative to on-shore turbines with range of costs.

Turbine Technology Information Gaps

- O&M Costs
- Capital Costs
- Information from other states or Canadian Great Lakes projects

Foundation Options and Installation

Meteorological and Wind turbine Construction Sub Group

Foundation Design Criteria

- Criteria required for design (design drivers in bold)
 - Geotechnical
 - Underwater currents
 - Water levels
 - Lake bathymetry
 - Wave characteristics
 - Icing climate
 - Wind loading

Information required - if available

- 50-year return wave (used in EU off-shore designs)
 - 100-year return wave estimated at 27'-30' for Wisconsin Great Lakes sites
- Design wind speed
- Design ice criteria
 - Army Corps of Engineers 5,000 lb/ft2 static ice load and 300 lb/ft2 max design ice load
- Underwater current design criteria
 - Not a design driver

Ice cones – conically shaped

Foundation Information Shallow Water

- Concrete gravity base foundation (o-10 m depth)
 - Well-known
 - Very little opportunity to use in WI due to water depths
- Steel gravity foundation (o-10 m depth)
 - Not as commonly used in Europe
- Conical cylindrical shell with ring footing (5-15 m depth)
 - Little less costly due to use of aggregate and gravel
 - Developed by Finns for use in high ice areas
 - No significant use yet
- Monopile foundation (3-25 m depth)
 - Most commonly used in Europe
 - Requires jack-up barge to install

Foundation Information Transitional and Deep Water

- Suction caisson (bucket) (3-20 m depth?)
 - Suction the tube to the bottom rather than drilling
 - Many benefits and might work to lower depths but is new technology
- Tripod/tetrapod technology (20-80 m depth)
 - Applicable to deeper water, e.g. Beatrice site
 - May require heavy lift barge; existing barges may not be able to get into Great Lakes
- Floating foundations (>25 m depth)
 - Allows installations in deep water
 - Has not been demonstrated on a commercial scale

Foundation Information Transitional and Deep Water

- Floating to Fixed Concept
 - Tug deployable
 - Not been demonstrated on a large-scale commercial wind project
- Dutch tri-floater
 - Tug deployable
 - Not been demonstrated on a large-scale commercial wind project
- Deep water concepts requiring further demonstration
 - WindSea (35-200 meters)
 - Blue H Prototype (tested 108 meters)
 - SWAY concept (>150 meters)

Foundation installation process

- Gravity foundation
 - Ideally build form/shell on land and tow/float to sea
 - Prepare lake bed to accept foundation
 - Can build at sea using coffer dams, but an expensive option
 - Place foundation and fill if required
 - Install transition piece
- Monopile
 - Drive with pile driving equipment at sea
 - Install transition piece

Installation equipment options

- Shallow water installations
 - Converted turbine installation vessel (TIV) Jack up barge
 - Purpose built TIV
 - Merlin Off-shore Wind Turbine Installation System
 - Heavy lift crane barge (Beatrice)
- Deep water installations
 - Standard options
 - Jack up barge, purpose built TIV, Merlin System, heavy lift barge
 - Options being evaluated (tug deployable)
 - Floating to Fixed Wind Energy Concept, Tri-floater, WindSea, Blue H
 Technology

off-shore Vessel Availability

- Jack up barges
 - Most commonly used, but in high demand
 - Wind industry competing w/ oil industry for these vessels
 - Trillium Power Energy plans to build TIV for installing 5 MW units on Lake Ontario
- TIV's, Merlin System, additional options
 - Being evaluated as options to jack up technology
 - Can be more costly preliminary
- Heavy lift crane barge
 - Has been used at Beatrice site

Jack Up Barge

Heavy duty crane barge

Wind Turbine Decommissioning Process and Cost

- Would involve similar equipment used for installation
- Process would be:
 - Remove rotor w/ blades
 - Transport rotors to port for dismantling, recycling, reuse, or to landfill
 - Remove and transport tower sections and transition pieces to port
 - Remove and recycle transmission system and foundation materials
 - Restore lake bed

Decommissioning Process Cont.

- Key issue w/ decommissioning is finding a recycling stream for fiberglass blades.
- NREL estimated decommissioning costs at 3% of total project cost.

Meteorological Conditions

Meteorological and Wind turbine Construction Sub Group

WI Offshore Wind Resources

Lake Michigan Ice Production in Typical S.E. WI Winter

WI off-shore Net Capacity Factors

After Wind Farm Losses (>100-MW Projects)

Transmission/ Interconnections

APPENDIX

off-shore Wind Turbine Foundation Information – Shallow Water

Foundation Type	Pros	Cons	Water Depth
Concrete gravity base	Well-known technology.	Size/weight.	0m to 10m –
foundation	Can construct on-shore and float to site.	 Decommissioning/removal. 	cost
	Rigid tower base.	Special foundation preparation may be	prohibitive at
	Can add conical section at top to act as ice	required – depending on soil type.	depths > 10m
	breaker.	• Foundation toe needs scour protection.	
Steel gravity foundation	Considerably lighter than concrete	Cylinder needs to be filled w/ granular	0m to 10m
	foundations.	material to withstand waves and ice.	
	 Low weight of steel cylinders allows more 	Need to install erosion protection around	
	rapid foundation installation.	foundation base.	
	 Foundation can be made on-shore. 	 Time consuming weld details. 	
	No piling.	 Need large area at laydown area to 	
	Can remove completely and repositioned.	construct.	
	Can be easily inspected.		
Thin-walled cylindrical shell w/	More rigid than a pile structure.	Needs firm/hard bed conditions.	5m to 15m
ring footing – conical shape	• Designed for areas w/ waves and ice ridge	Erosion protection required.	
and filled w/ granular material	action (e.g. Baltic Sea and Great Lakes)	 Cylinder needs to be filled w/ granular 	
(steel gravity foundation	• Steel shells can be transported by barge.	material to withstand waves and ice.	
designed to withstand ice	• 50-year design life.		
flows)			
Monopile foundation	Relatively simple to manufacture and	Requires specialized installation	3m to 25m
	construct.	equipment.	(some
	 No bed preparation required. 	 Sensitive to solids (rocks) when driven. 	sources up to
	 Foundation flexibility enables tuning of 	 Flexible at greater water depths. 	30m)
	structure dynamic characteristics.	Not suited for weak soils.	
	Quick installation.	Difficult to modify for ice protection.	
	 Low sensitivity to underwater erosion. 	 Price increases with respect to depth more 	
	DRAFT 2	rapidly in area with ice pressure concerns.	25

off-shore Wind Turbine Foundation Information – Transitional and Deep Water					
Foundation Type	Pros	Cons	Water Depth		
Suction caisson (bucket)	 Simpler/quicker construction procedure. Less/smaller installation equipment required. Easy to remove. Can be used in concert with deeper water options. 	 New technology. Inexpensive installation. Installation proven in limited range of materials. 	3m to 20m		
Tripod/tetrapod foundation Submerged tubular steel/concrete w/ guy wire attachments to lake bed	 Applicable to deeper water. No or limited seabed preparations. Can be made on-shore. Easy to remove. Suction bucket attachment could minimize lake bed disturbances. Guyed system cheaper if deeper. 	 Increases ice load unless modified w/transition piece. Boat access difficult unless modified. Sensitive to solids (rocks) when driven piles used for attachment. May require heavy lift barge. Guy wires could restrict fishing/anchoring 	20m to 80m		
Floating foundations	 Allows installations in deep water. Can use conventional installation equipment (i.e tugboats) versus barges Turbine sighting and interconnection flexibility 	 Methods primarily in conceptual phase. Stability, access and structural fatigue issues need to be analyzed. Uncertain cost. Expensive anchors (when applicable). 	> 25m		

off-shore Wind Turbine Foundation Information – Transitional and Deep Water					
Foundation Type	Pros	Cons	Water Depth		
Floating to Fixed Wind Energy Concept (25 – 40m?)	 Tug deployable. Could be used w/ suction buckets to minimize lake bed disturbances. Could be maintained import. 	 Not been demonstrated on large-scale commercial wind project. Uncertain cost. 	25m to 40m?		
Dutch tri-floater (>50m) Tension leg platform (>50m) Ballast/mooring/buoyancy stabilized (>60m)	 Tug deployable. Turbine sighting and interconnection flexibility. Could be maintained import. 	 Not been demonstrated on large-scale commercial wind project Uncertain cost. 	>50m		
WindSea (35 – 200m) Blue H Prototype (tested 108 m) SWAY concept (>150m)	Deep water concepts requiring further demonstration.		Varies		

Merlin System

Merlin system cont

